Abstract

Asymmetric rectifying I–V behaviour of multiferroic BiFeO3 (BFO) thin films grown on transparent ITO-coated glass was quantitatively studied as a function of ferroelectric polarization. Different polarized states were established by unipolar or bipolar poling with various applied electric fields. The effects of polarization relaxation and fatigue on the currents were also investigated. We found that the conduction currents and the associated rectifications were controlled by the amplitude and direction of the polarization. We clearly observed the linear dependence of the current on the polarization. It is suggested that the space-charge-limited conduction and the charge injection at the Schottky interface between the film and the electrodes dominate the current. The electrically controlled rectifying behaviour observed in this study may be useful in nonvolatile resistance memory devices or tunable diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.