Abstract

Liquid crystal spatial light modulators (LC-SLMs) are usually polarization sensitive optical elements. In this paper, we propose a polarization-independent beam steering system to overcome the polarization problem of conventional liquid crystal devices by employing two polarization-dependent LC-SLMs, a polarizing beam splitter and a half-wave plate. In this system, two one-dimensional LC-SLMs are aligned orthogonally to deflect the beam in azimuthal and elevation, respectively. This system enables LC-SLMs to work in any polarization state of incident light, and can realize continuous two-dimensional laser beam pointing. Properties of polarization-independence as well as two-dimensional beam steering were mathematically and experimentally verified with a good agreement. Using the well aligned beam steering system, linearly polarized beams in different polarization angle are deflected with high accuracy and efficiency. The measured angular deviations are less than 5 micro-radians to show a high-accuracy beam steering of the system. This polarization-independent beam steering scheme is useful in the applications of nonmechanical laser communication, Lidar, and other LC-based devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.