Abstract

Two-dimensional materials are a highly tunable platform for studying the momentum space topology of the electronic wavefunctions and real space topology in terms of skyrmions, merons, and vortices of an order parameter. Such textures for electronic polarization can exist in moiré heterostructures. A quantum-mechanical definition of local polarization textures in insulating supercells was recently proposed. Here, we propose a definition for local polarization that is also valid for systems with topologically nontrivial bands. We introduce semilocal hybrid polarizations, which are valid even when the Wannier functions in a system cannot be made exponentially localized in all dimensions. We use this definition to explicitly show that nontrivial real-space polarization textures can exist in topologically nontrivial systems with nonzero Chern number under (1) an external superlattice potential, and (2) under a stacking-induced moiré potential. In the latter, we find that while the magnitude of the local polarization decreases discontinuously across a topological phase transition from trivial to topologically nontrivial, the polarization does not completely vanish. Our findings suggest that band topology and real-space polar topology may coexist in real materials. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.