Abstract

Highly reflective surfaces are notorious in the field of depth sensing and three-dimensional (3D) imaging because they can cause severe errors in perception of the depth. Despite recent progress in addressing this challenge, there are still no robust and error-free solutions. Here, we devise a polarization structured light 3D sensor for solving these problems, in which high-contrast-grating (HCG) vertical-cavity surface-emitting lasers (VCSELs) are used to exploit the polarization property. We demonstrate accurate depth measurements of the reflective surfaces and objects behind them in various imaging situations. In addition, the absolute error and effective measurement range are measured to prove the applicability for a wide range of 3D applications. Our work innovatively combines polarization and depth information, opening the way for fully understanding and applying polarization properties in the 3D domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.