Abstract
Structural colors based on all-dielectric metasurfaces hold great promise for a wide range of applications, including high-density optical storage, ultra-high-resolution 3D displays, imaging security certification, and so on. However, achieving dynamic tunable structural color with a compact and simple Si platform remains a great challenge. Here, we propose a dynamic tunable structural coloration with polarization-sensitive metasurfaces consisting of arrays of Si elliptical nanopillars, enabling full-colored images to be displayed and switched through the control of the polarization of incident light. A distinct feature of our design is that the color phase is independent of the viewing angle, which is fundamental for real applications. Moreover, we demonstrated that dual and multiple colors can be obtained by varying the angle of either the polarizer or the analyzer. Our scheme provides a simple yet general approach for potential applications in the fields of virtual reality, ultra-high-resolution 3D displays, and high-density information storage.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have