Abstract
Sarcomeres are stereotyped force-producing mini-machines of striated muscles. Each sarcomere contains a pseudocrystalline order of bipolar actin and myosin filaments, which are linked by titin filaments. During muscle development, these three filament types need to assemble into long periodic chains of sarcomeres called myofibrils. Initially, myofibrils contain immature sarcomeres, which gradually mature into their pseudocrystalline order. Despite the general importance, our understanding of myofibril assembly and sarcomere maturation in vivo is limited, in large part because determining the molecular order of protein components during muscle development remains challenging. Here, we applied polarization-resolved microscopy to determine the molecular order of actin during myofibrillogenesis in vivo. This method revealed that, concomitantly with mechanical tension buildup in the myotube, molecular actin order increases, preceding the formation of immature sarcomeres. Mechanistically, both muscle and nonmuscle myosin contribute to this actin order gain during early stages of myofibril assembly. Actin order continues to increase while myofibrils and sarcomeres mature. Muscle myosin motor activity is required for the regular and coordinated assembly of long myofibrils but not for the high actin order buildup during sarcomere maturation. This suggests that, in muscle, other actin-binding proteins are sufficient to locally bundle or cross-link actin into highly regular arrays.
Highlights
Most animals use muscles to produce the forces that power active body movements
Every sarcomere consists of three protein filaments: thin actin filaments and thick myosin filaments that are linked by titin filaments
We applied a new microscopy technique—polarization-resolved microscopy, which was developed to quantify molecular order of molecules—to the flight muscles of the fruit fly Drosophila melanogaster, which is amenable to genetic manipulations
Summary
The various striated muscle types—including vertebrate heart and skeletal muscles, as well as the numerous insect body muscles—differ significantly in their development and physiology [1,2], they all share the same basic organizational principle of their contractile mini-machines called sarcomeres. Each sarcomere is bordered by two Z-discs, anchoring the cross-linked plus (barbed) ends of highly regular actin filaments. The minus (pointed) ends of these actin filaments point towards the center of the sarcomere, where they can interact with motor domains of centrally located bipolar myosin filaments. Titin’s N-terminus is anchored at the Z-disc, whereas its C-terminus connects to the myosin filaments in insect sarcomeres or extends all the way to the M-line in the middle of the myosin filaments in vertebrate sarcomeres [3,4,5,6]. The structural organization of sarcomeres and their molecular components are highly conserved from worms to humans, suggesting that the sarcomere represents an ancient molecular machine [7,8]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have