Abstract

This work focused on the construction of a nanomaterial-patterned structure for high-resolved ECL signal modulation. Due to the surface coupling effect, the different shapes and distribution states of surface plasmonic nanomaterials not only affect the luminescence intensity enhancement but also decide the electrochemiluminescence (ECL) polarization characteristics. Herein, tin disulfide quantum dots were synthesized via a solvothermal method as ECL emitters. Compared with other nanostructures, Au nanotriangle (Au NT) displayed both the localized surface plasmon resonance electromagnetic enhancement effect and the tip amplification effect, which had significant hot spot regions at three sharp tips. Therefore, self-assembled Au NT-based patterned structures with high density and uniform hot spots were constructed as ideal surface plasmonic materials. More importantly, the distribution states of the hot spots affect the polarization characteristics of ECL, resulting in directional ECL emission at different angles. As a result, a polarization-resolved ECL biosensor was designed to detect miRNA 221. Moreover, this polarization-resolved biosensor achieved good quantitative detection in the linear range of 1 fM to 1 nM and showed satisfactory results in the analysis of the triple-negative breast cancer patients' serum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call