Abstract
In this work, the aggregation-induced emission ligand 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene (H4TCBPE) was rigidified in the Ti-O network to form novel electrochemiluminescence (ECL) emitter H4TCBPE-TiO2 nanospheres, which acted as an effective ECL emitter to construct an "on-off" ECL biosensor for ultrasensitive detection of malathion (Mal). H4TCBPE-TiO2 exhibited excellent ECL responses due to the Ti-O network that can restrict the intramolecular free motions within H4TCBPE and then reduce the nonradiative relaxation. Moreover, TiO2 can act as an ECL co-reaction accelerator to promote the generation of sulfate radical anion (SO4•-), which interacts with H4TCBPE in the Ti-O network to produce enhanced ECL response. In the presence of Mal, numerous ligated probes (probe 1 to probe 2, P1-P2) were formed and released by copper-free click nucleic acid ligation reaction, which then hybridized with hairpin probe 1 (H1)-modified H4TCBPE-TiO2-based electrode surface. The P1-P2 probes can initiate the target-assisted terminal deoxynucleoside transferase (TdTase) extended reaction to produce long tails of deoxyadenine with abundant biotin, which can load numerous streptavidin-functionalized ferrocenedicarboxylic acid polymer (SA-PFc), causing quenching of the ECL signal. Thus, the ultrasensitive ECL biosensor based on H4TCBPE-TiO2 ECL emitter and click chemistry-actuated TdTase amplification strategy presents a desirable range from 0.001 to 100 ng/mL and a detection limit low to 9.9 fg/mL. Overall, this work has paved an avenue for the development of novel ECL emitters, which has opened up new prospects for ECL biosensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.