Abstract

We report on the design, construction and performance of a polarization Raman lidar, built for atmospheric monitoring in the Vipava valley in SW Slovenia, a regional air pollution hot-spot where aerosols are expected to originate from a number of different sources. Its key features are automatized remote operation capability and indoor deployment, which provide high duty cycle in all weather conditions. System optimization and performance studies include the calibration of the depolarization ratio, merging of near-range (analog) and far-range (photon-counting) data, determination of overlap functions and validation of the retrieved observables with radiosonde data.

Highlights

Read more

Summary

Introduction

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call