Abstract

With nonequilibrium Green's function approach combined with density functional theory, we perform an ab initio calculation to investigate transport properties of graphene nanoribbon (GNR) junctions self-consistently. Tight-binding approximation is applied to model the zigzag (ZGNR) electrodes, and its validity is confirmed in comparison to the GAUSSIAN03 periodic boundary condition calculation result of the same system. The origin of abnormal jump points usually appearing in the transmission spectrum is explained with the detailed tight-binding ZGNR band structure. Transport property of an edge-defect ZGNR junction is investigated, and the tunable tunneling current can be sensitively controlled by transverse electric fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.