Abstract
We present results of numerical simulations of flux and linear polarization variations in transiting exoplanetary systems, caused by the host star disk symmetry breaking. We consider different configurations of planetary transits depending on orbital parameters. Starspot contribution to the polarized signal is also estimated. Applying the method to known systems and simulating observational conditions, a number of targets is selected where transit polarization effects could be detected. We investigate several principal benefits of the transit polarimetry, particularly, for determining orbital spatial orientation and distinguishing between grazing and near-grazing planets. Simulations show that polarization parameters are also sensitive to starspots, and they can be used to determine spot positions and sizes.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have