Abstract
Polarization-dependent photoemission electron microscopy (PD-PEEM) exploits spatial variation in the optical selection rules of materials to image domain formation and material organization on the nanoscale. In this Perspective, we discuss the mechanism of PD-PEEM that results in the observed image contrast in experiments and provide examples of a wide range of material domain structures that PD-PEEM has been able to elucidate, including molecular and polymer domains, local electronic structure and defect symmetry, (anti)ferroelectricity, and ferromagnetism. In the end, we discuss challenges and new directions that are possible with this tool for probing domain structure in materials, including investigating the formation of transient ordered states, multiferroics, and the influence of molecular and polymer order and disorder on excited state dynamics and charge transport.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.