Abstract
The interplay between light and matter has fostered innovative research in surface plasmons, specifically in graphene, due to its tunable Fermi energy and reduced losses in the infrared and terahertz spectra. This study explores the anisotropic coupling of nonlocalized surface plasmons in graphene with localized magnetic polaritons (MP) in a silicon carbide (SiC) array. By adjusting graphene’s Fermi energy and polarization angle, we successfully achieved hybrid coupling, giving rise to three clearly distinguishable hybridized states. Using the coupled oscillator model as a framework, we conducted an analysis of the intricate multimode coupling and accurately ascertained the weighting efficiencies of the individual modes comprising the hybrids. By integrating the design principles of space-time coding metasurfaces, we successfully broadened the scope of the application, extending its reach from the near-field to the far-field. These novel discoveries pave new paths for advancements in thermal emitters, photonic systems, energy conversion technologies, and the creation of cutting-edge plasmonic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.