Abstract

A new concept and a theoretical approach for modeling a tunable polarization-controlled optical ring cavity pulse stretcher is demonstrated. The technique discussed herein permits highly simplified and flexible tuning of the temporal shape of nanosecond duration pulses. Using half-wave plates positioned extra- and intracavity, transmission to reflection ratios across both input faces of a polarization beam splitter can easily be controlled. The resulting models indicate a further reduction in peak intensity of 30%, with respect to conventional dielectric beam splitting optical ring cavities, when configured under equivalent and optimized cavity settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call