Abstract

This paper demonstrates a tunable and flexible metamaterial with the cuboid hexagonal boron nitride (h-BN) arrays on a dielectric substrate. We numerically investigated the effect of the polarization together with the incident angle of the probe light on the transmission spectra of metamaterials and designed different geometric structures tuning the resonant frequency near the Reststrahlen bands of the h-BN in the mid-infrared. We further simulated the electric field distribution and calculated charge density associated to the specific responses that respectively exhibit the strong electric dipole resonances between the adjacent unit cells and inside the h-BN cuboids. The results show that both the positions of the resonance and the coupling strength strongly depend on geometric construction and corresponding external excitation condition. Hence the amplitude of the resonance can be actively modulated via altering excitation conditions and the metamaterial arrays can be designed to control the resonance in different spectra positions. Such metamaterials are important for its strong anisotropy and the extraordinary sensitivity which may find numerous applications in the design of metamaterials with specific sensing, nonlinear optical response and imaging capabilities creating new avenues for the development of devices in the mid-infrared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call