Abstract

Intrinsically disordered proteins (IDPs) are highly structurally heterogeneous without a specific tertiary structure under physiology conditions and play key roles in the development of human diseases. Due to the characteristics of diverse conformations, as one of the important methods, molecular dynamics simulation can complement information for experimental methods. Because of the enrichment for charged amino acids for IDPs, polarizable force fields should be a good choice for the simulation of IDPs. However, current polarizable force fields are limited in sampling conformer features of IDPs. Therefore, a polarizable force field was released and named Drude2019IDP based on Drude2019 with reweighting and grid-based potential energy correction map optimization. In order to evaluate the performance of Drude2019IDP, 16 dipeptides, 18 short peptides, 3 representative IDPs, and 5 structural proteins were simulated. The results show that the NMR observables driven by Drude2019IDP are in better agreement with the experiment data than those by Drude2019 on short peptides and IDPs. Drude2019IDP can sample more diverse conformations than Drude2019. Furthermore, the performances of the two force fields are similar to the sample ordered proteins. These results confirm that the developed Drude2019IDP can improve the reproduction of conformers for intrinsically disordered proteins and can be used to gain insight into the paradigm of sequence-disorder for IDPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.