Abstract
Intrinsically disordered proteins (IDPs) are proteins without a fixed three-dimensional (3D) structure under physiological conditions and are associated with Parkinson's disease, Alzheimer's disease, cancer, cardiovascular disease, amyloidosis, diabetes, and other diseases. Experimental methods can hardly capture the ensemble of diverse conformations for IDPs. Molecular dynamics (MD) simulations can sample continuous conformations that might provide a valuable complement to experimental data. However, the accuracy of MD simulations depends on the quality of force field. In particular, the evolutionary conservation and coevolution of IDPs introduce that current force fields could not precisely reproduce the conformation of IDPs. In order to improve the performance of force field, deep learning and reweighting methods were used to automatically generate personal force field parameters for intrinsically disordered and ordered proteins. At first, the deep learning method predicted more accuracy φ/ψ dihedral of residue than the previous method. Then, reweighting optimized the personal force field parameters for each residue. Finally, typical representative systems such as IDPs, structure protein, and fast-folding protein were used to evaluate this force field. The results indicate that two personal force field parameters (named PPFF1 and PPFF1_af2) could better reproduce the experimental observables than ff03CMAP force field. In summary, this strategy will provide feasibility for the development of precise personal force fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.