Abstract

The prevalence of chirality, or, handedness in biological world is a fundamental phenomenon and a characteristic hallmark of life. Thus, understanding the origin of enantio-selection, i.e., the sense and magnitude of asymmetric induction, has been a long-pursued goal in asymmetric catalysis. Herein, we demonstrated a polarizability-derived electronic effect that was shown to be capable of rationalizing a broad range of stereochemical observations made in the field of asymmetric catalysis. This effect provided a consistent enantio-control model for the prediction of major enantiomers formed in a ruthenium-catalyzed asymmetric transfer hydrogenations of ketones. Direct and quantitative linear free energy relationships between substrates’ local polarizabilities and observed enantio-selectivity were also revealed in three widely known asymmetric catalytic systems covering both reductions and oxidations. This broadly applicable polarizability-based electronic effect, in conjunction with conventional wisdom mainly leveraging on steric effect considerations, should aid rational design of enantio-selective processes for better production of chiral substances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call