Abstract

We report on the observation of spin whirls in a radially expanding polariton condensate formed under non-resonant optical excitation. Real space imaging of polarization- and time-resolved photoluminescence reveal a spiralling polarization pattern in the plane of the microcavity. Simulations of the spatiotemporal dynamics of a spinor condensate reveal the crucial role of polariton interactions with a spinor exciton reservoir. Harnessing spin dependent interactions between the exciton reservoir and polariton condensates allows for the manipulation of spin currents and the realization of dynamic collective spin effects in solid state systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.