Abstract

Two novel aspects of polarimetric calibration for fully polarimetric imaging radar systems are addressed. First, the radar system model is formulated in the context of two generic transmitter designs, either a single amplifier followed by a high-power switch or a low-power switch followed by two amplifiers. In the latter case, it is shown that a particular factorization of the polarimetric distortion matrix leads to a significant simplification of the cross-talk representation, from the standard four parameters to two reciprocal parameters, one for each of the antennas. Various system models from the literature are thus placed in a unified framework. Second, calibration techniques for circularly polarized antennas are derived, using either corner reflectors or clutter. However, where standard linear-basis algorithms estimate the cross-talk by its first-order distortion of reflection-symmetric clutter, no equivalent algorithm has been found for the circular basis; indeed, it is shown that the distortion caused, to first-order, by circular-basis cross-talk does not permit the individual cross-talk parameters to be identified. The calibration techniques are applied to fully polarimetric data acquired by the Ingara L-band radar using left- and right-polarized helical antennas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.