Abstract

The influence of the nature of the stationary phase and carrier gas (helium, hydrogen, nitrogen, carbon dioxide, or nitrous oxide) on the efficiency and separating ability of monolithic ethyleneglycol dimethacrylate (EDMA) polymer capillary columns was studied using a model mixture of light hydrocarbons C1-C4. The results were compared with the properties of silica gel and divinylbenzene (DVB) monolithic columns. For EDMA polymer monolithic columns, the effect of the carrier gas on the separating ability was markedly lower than for silica gel columns. A reduction in HETP observed in the series He > H2 > N2 > N2O > CO2 is also known for hollow capillary columns with polymer stationary phases, but the change in efficiency was ∼20–30% in this case. Under the optimum conditions, HETP was minimum for the columns when CO2 or N2O was used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call