Abstract
Chromatographing a model mixture of hydrocarbons with various carrier gases (helium, hydrogen, nitrogen, carbon dioxide, and nitrous oxide) was used to study the separation ability of monolithic silica capillary columns. It was revealed that the nature of the carrier gas strongly affects the retention time of the sorbates and the height equivalent to a theoretical plate (HETP) of the column, with the values of both these parameters decreasing in the series He > H2 > N2 > CO2 ∼ N2O. This effect was found to be more pronounced for normal hydrocarbons than for their isomers. For chromatographing with CO2 or N2O under optimum conditions, the HETP was 25–30 μm, a value indicative of a higher specific efficiency of monolithic capillary columns. Theoretical correlations between the HETP and the properties of the mobile phase were considered. As a result, it was concluded that elevated pressures of the carrier gas, which are required to ensure the optimum operation of monolithic capillary columns, may affect the properties of the chromatographic system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.