Abstract
Polar metals, a family of materials with exclusive but coexisting electric polarization and metallicity, have attracted plenty of studies recently. Experimentally, how these two exclusive states interact with each other is still an open question thus far. Here, we report on the existence of ferroelectric metal states with switchable electric polarization and unexpected high carrier density in Ba0.5La0.5TiO3 films. A combination of atomic resolution scanning transmission electron microscopy, high-resolution x-ray diffraction, piezoresponse force microscopy, optical second harmonic generation, and electrical transport was utilized to investigate the crystal and electronic structures of Ba0.5La0.5TiO3 films. Unexpectedly, with the modulation of ferroelectricity, the density of conduction electrons can be tuned from 1019 to 1021 cm−3. Our results provide a way to design polar metals with coexisting switchable electric polarization and high-density conduction electrons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.