Abstract
Precise incorporation of functional residues into sequences allows for tailoring the noncovalent interactions between peptides to guide their self-assembly into well-defined nanostructures, thus facilitating creation of artificial functional materials resembling natural systems. Here, we report on the self-assembly of dipeptides consisting of one fluorinated phenylalanine unit (Z residue) and one natural aromatic residue into laminated nanofibers predominately driven by polar-π interactions. On the basis of characterizations using transmission electron microscopy, scanning electron microscopy, atomic force microscopy, circular dichroism, Fourier transform infrared spectroscopy, and thioflavin T binding assay, we found that the face-centered stacking pattern of the dipeptides FZ, ZF, and ZY stabilized by the polar-π interactions and antiparallel β-sheet H-bonding interactions led to lamination of nanofibers and formation of ribbonlike nanostructures. Our findings demonstrate that incorporation of fluorinated aromatic units into short peptides not only promotes of polar-π interactions as alternative self-assembling driving forces but also governs the organizing pattern of peptides, thus benefiting creation of well-defined peptide nanostructures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have