Abstract

We construct a Poisson map between manifolds with linear Poisson brackets corresponding to the Lie algebras $e(3)$ and $so(4)$. Using this map we establish a connection between the deformed Kowalevski top on $e(3)$ proposed by Sokolov and the Kowalevski top on $so(4)$. The connection between these systems leads to the separation of variables for the deformed system on $e(3)$ and yields the natural $5\times 5$ Lax pair for the Kowalevski top on $so(4)$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.