Abstract
We develop the theory of discrete time Lagrangian mechanics on Lie groups, originated in the work of Veselov and Moser, and the theory of Lagrangian reduction in the discrete time setting. The results thus obtained are applied to the investigation of an integrable time discretization of a famous integrable system of classical mechanics, -- the Lagrange top. We recall the derivation of the Euler--Poinsot equations of motion both in the frame moving with the body and in the rest frame (the latter ones being less widely known). We find a discrete time Lagrange function turning into the known continuous time Lagrangian in the continuous limit, and elaborate both descriptions of the resulting discrete time system, namely in the body frame and in the rest frame. This system naturally inherits Poisson properties of the continuous time system, the integrals of motion being deformed. The discrete time Lax representations are also found. Kirchhoff's kinetic analogy between elastic curves and motions of the Lagrange top is also generalised to the discrete context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.