Abstract
We provide a quantitative characterization of generic weakly first-order thermal phase transitions out of planar spin-nematic states in three-dimensional spin-one quantum magnets, based on calculations using Poisson-Dirichlet distributions (PD) within a universal loop model formulation, combined with large-scale quantum Monte Carlo calculations. In contrast to earlier claims, the thermal melting of the nematic state is not continuous, instead a weakly first-order transition is identified from both thermal properties and the distribution of the nematic order parameter. Furthermore, based on PD calculations, we obtain exact results for the order parameter distribution and Binder cumulants at the discontinuous melting transition. Our findings establish the thermal melting of planar spin-nematic states as a generic platform for quantitative approaches to weakly first-order phase transitions in quantum systems with a continuous SU(2) internal symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.