Abstract

Nathaniel Dean asks the following: Is it possible to find four nonconcyclic points on the parabola y = x 2 y=x^2 such that each of the six distances between pairs of points is rational? We demonstrate that there is a correspondence between all rational points satisfying this condition and orbits under a particular group action of rational points on a fiber product of (three copies of) an elliptic surface. In doing so, we provide a detailed description of the correspondence, the group action and the group structure of the elliptic curves making up the (good) fibers of the surface. We find for example that each elliptic curve must contain a point of order 4. The main result is that there are infinitely many rational distance sets of four nonconcyclic (rational) points on y = x 2 y=x^2 . We begin by giving a brief history of the problem and by placing the problem in the context of a more general, long-standing open problem. We conclude by giving several examples of solutions to the problem and by offering some suggestions for further work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.