Abstract
We construct examples of families of curves of genus 2 or 3 over Q whose Jacobians split completely and have various large rational torsion subgroups. For example, the rational points on a certain elliptic surface over P^1 of positive rank parameterize a family of genus-2 curves over Q whose Jacobians each have 128 rational torsion points. Also, we find the genus-3 curve 15625(X^4 + Y^4 + Z^4) - 96914(X^2 Y^2 + X^2 Z^2 + Y^2 Z^2) = 0, whose Jacobian has 864 rational torsion points. This paper has appeared in Forum Math. 12 (2000) 315-364.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.