Abstract

Sophisticated equipment, lengthy protocols, and skilled operators are required to perform protein microarray-based affinity assays. Consequently, novel tools are needed to bring biomarkers and biomarker panels into clinical use in different settings. Here, we describe a novel paper-based vertical flow microarray (VFM) system with a multiplexing capacity of at least 1480 microspot binding sites, colorimetric readout, high sensitivity, and assay time of <10 min before imaging and data analysis. Affinity binders were deposited on nitrocellulose membranes by conventional microarray printing. Buffers and reagents were applied vertically by use of a flow controlled syringe pump. As a clinical model system, we analyzed 31 precharacterized human serum samples using the array system with 10 allergen components to detect specific IgE reactivities. We detected bound analytes using gold nanoparticle conjugates with assay time of ≤10 min. Microarray images were captured by a consumer-grade flatbed scanner. A sensitivity of 1 ng/mL was demonstrated with the VFM assay with colorimetric readout. The reproducibility (CV) of the system was <14%. The observed concordance with a clinical assay, ImmunoCAP, was R(2) = 0.89 (n = 31). In this proof-of-concept study, we demonstrated that the VFM assay, which combines features from protein microarrays and paper-based colorimetric systems, could offer an interesting alternative for future highly multiplexed affinity point-of-care testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.