Abstract
We performed point-contact Andreev-reflection spectroscopy measurements in Ca(Fe1−xCox)2As2 single crystals with effective x = 0.060 ± 0.005. The spectra of ab-plane contacts show a zero-bias maximum and broad shoulders at about 5–6 meV. Their fit with the three-dimensional Blonder–Tinkham–Klapwijk (BTK) model (making use of an analytical expression for the Fermi surface that mimics the one calculated from first principles) shows that this compound presents a large isotropic gap on the quasi-2D electronlike Fermi surface sheets and a smaller anisotropic (possibly nodal) gap on the 3D holelike Fermi surface pockets centered at the Z point in the Brillouin zone. These results nicely fit into the theoretical picture for the appearance of nodal superconductivity in 122 compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.