Abstract

The online planning and learning in partially observable Markov decision processes are often intractable because belief states space has two curses: dimensionality and history. In order to address this problem, this paper proposes a point-based Monte Carto online planning approach in POMDPs. This approach involves performing value backup at specific reachable belief points, rather than over the entire belief simplex, to speed up computation processes. Then Monte Carlo tree search algorithm is exploited to share the value of actions across each subtree of the search tree so as to minimise the mean squared error. The experimental results show that the proposed algorithm is effective in real-time system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.