Abstract

A model-free approach is presented, based on the Monte Carlo tree search (MCTS) algorithm, for the control of mixed traffic flow of human-driven vehicles (HDV) and connected and autonomous vehicles (CAV), named MCTS-MTF, on a one-lane roadway with signalized intersection control. Previous research has often simplified the problem with certain assumptions to reduce computational burden, such as dividing a vehicle trajectory into several segments with constant speed or linear acceleration/deceleration, which was rather unrealistic. This study departs from the existing research in that minimum constraints on CAV trajectory control were required, as long as the basic rules such as safety considerations and vehicular performance limits were followed. Modeling efforts were made to improve the algorithm solution quality and the run time efficiency over the naïve MCTS algorithm. This was achieved by an exploration-exploitation balance calibration module, and a tree expansion determination module to expand the tree more effectively along the desired direction. Results of a case study found that the proposed algorithm was able to achieve a travel time saving of 3.5% and a fuel consumption saving of 6.5%. It was also demonstrated to run at eight times the speed of a naïve MCTS model, suggesting a promising potential for real-time or near real-time applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.