Abstract

High-level spatial relation and configuration modeling issues are gaining momentum in the image analysis and pattern recognition fields. In particular, it is deemed important whenever one needs to mine high-content images or large scale image databases in a more expressive way than a purely statistically one. Continuing previous efforts to incorporate structural analysis by developing specific efficient morphological tools performing on mesh representations like Delaunay triangulations, we propose to formalize spatial relation modeling techniques dedicated to unorganized point sets. We provide an original mesh lattice framework which is more convenient for structural representations of large image data by means of interest point sets and their morphological analysis. The set of designed numerical operators is based on a specific dilation operator that makes it possible to handle concepts like “between” or “left of” over sparse representations of image data such as graphs. Based on this new theoretical framework for reasoning about images, we are able to process high-level queries over large histopathological images, knowing that digitized histopathology is a new challenge in the field of bio-imaging due to the high-content nature and large size of these images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.