Abstract
The convergence of a sequence of point processes with dependent points, defined by a symmetric function of iid high-dimensional random vectors, to a Poisson random measure is proved. This also implies the convergence of the joint distribution of a fixed number of upper order statistics. As applications of the result a generalization of maximum convergence to point process convergence is given for simple linear rank statistics, rank-type U-statistics and the entries of sample covariance matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.