Abstract

Municipal sewage treatment plants (STPs) have been regarded as an important source of organic contaminants in aquatic environment. To assess the impact of STPs on occurrence and toxicity of STP-associated contaminants in receiving waterways, a novel passive sampler modified from polar organic chemical integrative sampler (m-POCIS) was deployed at the inlet and outlet of a STP and several upstream and downstream sites along a river receiving STP effluent in Guangzhou, China. Eighty-seven contaminants were analyzed in m-POCIS extracts, along with toxicity evaluation using zebrafish embryos. Polycyclic musks were the predominant contaminants in both STP and urban waterways, and antibiotics and current-use pesticides (e.g., neonicotinoids, fiproles) were also ubiquitous. The m-POCIS extracts from downstream sites caused significant deformity in embryos, yet the toxicity could not be explained by the measured contaminants, implying the presence of nontarget stressors. Sewage treatment process substantially reduced embryo deformity, chemical oxygen demand, and contamination levels of some contaminants; however, concentrations of neonicotinoids and fiproles increased after STP treatment, possibly due to the release of chemicals from perturbed sludge. Source identification showed that most of the contaminants found in urban waterways were originated from nonpoint runoff, while cosmetics factories and hospitals were likely point sources for musks and antibiotics, respectively. Although the observed embryo toxicity could not be well explained by target contaminants, the present study showed a promising future of using passive samplers to evaluate chemical occurrence and aquatic toxicity concurrently. Zebrafish embryo toxicity significantly decreased after sewage treatment, but higher toxicity was observed for downstream samples, demonstrating that urban runoff may produce detrimental effects to aquatic life, particularly in rainy season. These results highlight the relevance of monitoring nonpoint source pollution along with boosting municipal sewage treatment infrastructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call