Abstract
It is well known that the Schwarzschild solution describes the gravitational field outside compact spherically symmetric mass distribution in General Relativity. In particular, it describes the gravitational field outside a point particle. Nevertheless, what is the exact solution of Einstein's equations with $\delta$-type source corresponding to a point particle is not known. In the present paper, we prove that the Schwarzschild solution in isotropic coordinates is the asymptotically flat static spherically symmetric solution of Einstein's equations with $\delta$-type energy-momentum tensor corresponding to a point particle. Solution of Einstein's equations is understood in the generalized sense after integration with a test function. Metric components are locally integrable functions for which nonlinear Einstein's equations are mathematically defined. The Schwarzschild solution in isotropic coordinates is locally isometric to the Schwarzschild solution in Schwarzschild coordinates but differs essentially globally. It is topologically trivial neglecting the world line of a point particle. Gravity attraction at large distances is replaced by repulsion at the particle neighbourhood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.