Abstract

The concept of soliton as regular localized stable solutions of nonlinear differential equations is being widely utilized in pure science for various aims. In present analysis, the soliton concept is used as a model in order to describe the configurations of elementary particles in general relativity. To this end, our study deals with the spherical symmetric solitons of interacting Spinor, Scalar and Gravitational Fields in General Relativity. Thus, exact spherical symmetric general solutions to the interaction of spinor, scalar and gravitational field equations have been obtained. The Einstein equations have been transformed into a Liouville equation type and solved. Let us emphasize that these solutions are regular with localized energy density and finite total energy. In addition, the total charge and spin are limited. Moreover, the obtained solutions are soliton-like solutions. These solutions can be used in order to describe the configurations of elementary particles.

Highlights

  • The theory of solitons in general relativity was first elaborated by G

  • The soliton concept is used as a model in order to describe the configurations of elementary particles in general relativity

  • Let us emphasize that these solutions are regular with localized energy density and finite total energy

Read more

Summary

Objectives

The aim of the paper was to study the role of the interaction of nonlinear spinor, scalar and gravitational fields in the formation of configurations with localized energy density and limited energy, spin and charge of the spinor field

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.