Abstract
We study the classical result by Bruijn and Erdős regarding the bound on the number of lines determined by a n-point configuration in the plane, and in the light of the recently proven Tropical Sylvester-Gallai theorem, come up with a tropical version of the above-mentioned result. In this work, we introduce stable tropical lines, which help in answering questions pertaining to incidence geometry in the tropical plane. Projective duality in the tropical plane helps in translating the question for stable lines to stable intersections that have been previously studied in depth. Invoking duality between Newton subdivisions and line arrangements, we are able to classify stable intersections with shapes of cells in subdivisions, and this ultimately helps us in coming up with a bound. In this process, we also encounter various unique properties of linear Newton subdivisions which are dual to tropical line arrangements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.