Abstract

AbstractA statistical downscaling algorithm is introduced to forecast surface wind speed at a location. The downscaling algorithm consists of resolved and unresolved components to yield a time series of synthetic wind speeds at high time resolution. The resolved component is a bias-corrected numerical weather prediction model forecast of the 10-m wind speed at the location. The unresolved component is a simulated time series of the high-frequency component of the wind speed that is trained to match the variance and power spectral density of wind observations at the location. Because of the stochastic nature of the unresolved wind speed, the downscaling algorithm may be repeated to yield an ensemble of synthetic wind speeds. The ensemble may be used to generate probabilistic predictions of the sustained wind speed or wind gusts. Verification of the synthetic winds produced by the downscaling algorithm indicates that it can accurately predict various features of the observed wind, such as the probability distribution function of wind speeds, the power spectral density, daily maximum wind gust, and daily maximum sustained wind speed. Thus, the downscaling algorithm may be broadly applicable to any application that requires a computationally efficient, accurate way of generating probabilistic forecasts of wind speed at various time averages or forecast horizons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call