Abstract
Two-dimensional Ruddlesden-Popper (RP) halide perovskites stand out as excellent layered materials with favorable optoelectronic properties for efficient light-emitting, spintronic, and other spin-related applications. However, properties often determined by defects are not well understood in these perovskite systems. This work investigates the ground state electronic structure of commonly formed defects in a typical RP perovskite structure by density functional theory. Our study reveals that these 2D perovskites generally retain their defect tolerance with limited perturbation of the electronic structure in the case of neutral-type point defects. In contrast, donor/acceptor defects induce deep midgap states, potentially causing harm to the material's electronic performance. To retain positive intrinsic properties, the halide vacancies and interstitial defects should be avoided. The observed strong electron localization results in trap states and consequently leads to reduced device performance. This understanding can guide experimental efforts that aim for improved 2D halide perovskite-based device performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.