Abstract
Full-reference (FR) point cloud quality assessment (PCQA) has achieved impressive progress in recent years. However, in many cases, obtaining the reference point clouds is difficult, so no-reference (NR) metrics have become a research hotspot. Few researches about NR-PCQA are carried out due to the lack of a large-scale PCQA dataset. In this article, we first build a large-scale PCQA dataset named LS-PCQA, which includes 104 reference point clouds and more than 22,000 distorted samples. In the dataset, each reference point cloud is augmented with 31 types of impairments (e.g., Gaussian noise, contrast distortion, local missing, and compression loss) at 7 distortion levels. Besides, each distorted point cloud is assigned with a pseudo-quality score as its substitute of Mean Opinion Score. Inspired by the hierarchical perception system and considering the intrinsic attributes of point clouds, we propose a NR metric ResSCNN based on sparse convolutional neural network (CNN) to accurately estimate the subjective quality of point clouds. We conduct several experiments to evaluate the performance of the proposed NR metric. The results demonstrate that ResSCNN exhibits the state-of-the-art performance among all the existing NR-PCQA metrics and even outperforms some FR metrics. The dataset presented in this work will be made publicly accessible at https://smt.sjtu.edu.cn . The source code for the proposed ResSCNN can be found at https://github.com/lyp22/ResSCNN .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Multimedia Computing, Communications, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.