Abstract
Owing to complexity of indoor environment, such as close range, multi-angle, occlusion, uneven lighting conditions and lack of absolute positioning information, quality assessment of indoor mobile mapping point clouds is a tough and challenging task. It is meaningful to evaluate the features extracted from indoor point clouds prior to further quality assessment. In this paper, we mainly focus on feature extraction depend upon indoor RGB-D camera for the quality assessment of point cloud data, which is proposed for selecting and screening local features, using random forest algorithm to find the optimum feature for the next step’s quality assessment. First, we collect indoor point clouds data and classify them into classes of complete or incomplete. Then, we extract high dimensional features from the input point clouds data. Afterwards, we select discriminative features through random forest. Experimental results on different classes demonstrate the effective and promising performance of the presented method for point clouds quality assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.