Abstract

LiDAR technology has been widely applied in various disciplines as it can obtain 3D information of targets directly and accurately. However, it is still a challenge to processing LiDAR point clouds efficiently as its huge datasets and complicated processing procedures. Current processing methods need integrate multiple software to complete the whole processing procedures to produce final results which needs lots of time effort and cause low efficiency. By analyzing the theories and methods of LiDAR data processing procedures, this research aims to develop a new point cloud processing software based on PCL and Qt. Firstly, the overall design and modules of the processing system was introduced. The main modules include data management, visualization, filtering, segmentation modeling and auxiliary function. Secondly, to improve system security and maintenance convenience, the system adopts the object-oriented programming method to encapsulate private members and methods of classes, and only open public member variables and methods are available to users. The main classes which were employed in this research were explained. Finally, indoor environments datasets were used to verify the point cloud processing system. The results showed that system has strong interactivity, intuitive display, easy to use and comprehensive features and good results can be derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.