Abstract

The problem of synthesizing an optimal sensor selection policy is pertinent to a variety of engineering applications ranging from event detection to autonomous navigation. We consider such a synthesis problem in the context of linear-Gaussian systems over an infinite time horizon with a discounted cost criterion. We formulate this problem in terms of a value iteration over the continuous space of covariance matrices. To obtain a computationally tractable solution, we subsequently formulate an approximate sensor selection problem, which is solvable through a point-based value iteration over a finite “mesh” of covariance matrices with a user-defined bounded trace. We provide theoretical guarantees bounding the suboptimality of the sensor selection policies synthesized through this method and provide numerical examples comparing them to known results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.