Abstract

Accurate prediction of wind speed is significant importance in various applications such as renewable energy management, weather prediction, and aviation safety. However, more papers only focus on the time series of wind speed, ignoring the impact of other factors on wind speed, which will reduce the effectiveness of wind speed prediction. Therefore, an innovative methodology is suggested for both point and interval forecasts of multivariate wind speed time series using a Dual-layer Long Short-Term Memory (NVDL) in this paper. The proposed multivariate forecasting model takes into account the dependencies and correlations among different variables, which are essential for capturing the complex dynamics of wind speed variations. The first layer of the Dual-layer LSTM is responsible for capturing the temporal dependencies within each variable individually, while the second layer captures the interdependencies among the variables. By incorporating this dual-layer architecture, our model effectively captures the complex spatiotemporal patterns present for multivariate wind speed information. The results obtained from both interval and point prediction demonstrate that the proposed methodology outperforms all comparative models in the precision and stability of wind speed forecasting. Therefore, the proposed forecasting methodology, characterized by minimal prediction errors and exceptional generalization ability, can be a reliable tool for smart grid programming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call