Abstract

In this chapter the authors consider the numerical treatment of a mixed-integer optimal control problem governed by linear convection-diffusion equations and binary control variables. Using relaxation techniques (introduced by [31] for ordinary differential equations) the original mixed-integer optimal control problem is transferred into a relaxed optimal control problem with no integrality constraints. After an optimal solution to the relaxed problem has been computed, binary admissible controls are constructed by a sum-up rounding technique. This allows us to construct – in an iterative process – binary admissible controls such that the corresponding optimal state and the optimal cost value approximate the original ones with arbitrary accuracy. However, using finite element (FE) methods to discretize the state and adjoint equations often yield to extensive systems which make the frequently calculations time-consuming. Therefore, a model-order reduction based on the proper orthogonal decomposition (POD) method is applied. Compared to the FE case, the POD approach yields to a significant acceleration of the CPU times while the error stays sufficiently small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.