Abstract
In big data query processing, there is a trade-off between query accuracy and query efficiency, for example, sampling query approaches trade-off query completeness for efficiency. In this article, we argue that query performance can be significantly improved by slightly losing the possibility of query completeness, that is, the chance that a query is complete. To quantify the possibility, we define a new concept, Probability of query Completeness (hereinafter referred to as PC). For example, If a query is executed 100 times, PC = 0.95 guarantees that there are no more than 5 incomplete results among 100 results. Leveraging the probabilistic data placement and scanning, we trade off PC for query performance. In the article, we propose PoBery (POssibly-complete Big data quERY), a method that supports neither complete queries nor incomplete queries, but possibly-complete queries. The experimental results conducted on HiBench prove that PoBery can significantly accelerate queries while ensuring the PC. Specifically, it is guaranteed that the percentage of complete queries is larger than the given PC confidence. Through comparison with state-of-the-art key-value stores, we show that while Drill-based PoBery performs as fast as Drill on complete queries, it is 1.7 ×, 1.1 ×, and 1.5 × faster on average than Drill, Impala, and Hive, respectively, on possibly-complete queries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.