Abstract

Dynamically tunable interfacial dry adhesion plays a significant role in numerous biological functions and industrial applications. Among various strategies, pneumatics-activated adhesive devices draw much attention due to their distinct advantages such as fast speed, reliable performance, large adhesion tunability and easily accessible materials. To understand and predict adhesion strength of pneumatics-activated adhesives, it is necessary to examine their interfacial mechanics that is nonlinearly coupled with the large deformation of the devices under pressure. However, previous studies have only focused on axisymmetric cases in which the outline of the contact area is circular, whereas the tunable adherence of non-circular contact controlled by pneumatics remains elusive. In this work, through a combination of experiments and simulations, we study the effect of non-circular contact geometry on tunable dry adhesion of pressure-activated soft hollow pillars. Specifically, elliptical, square, and rectangular contact shapes are considered and their effects on tunable adhesion of the soft hollow pillars are compared to that of circular contact geometry thoroughly. The results show that soft hollow pillars with elliptical, square, and rectangular contact surfaces demonstrate rich interfacial delamination behaviors that depend on the contact outline geometry and internal pressure. Among all contact geometries, elliptical contact has the highest adhesion tunability yet requires lowest activating pressure owing to the non-uniform curvature distribution of the contact outline. However, when the eccentricity increases, the elliptical contact has reduced tunability of adhesion caused by the contact of opposing sides of the sidewall upon buckling. For square and rectangular contacts, they have the lowest adhesion tunability and need higher activating pressure than those of circular and elliptical contact since the 90-degree edges of the sidewall prohibit buckling instability. Our findings greatly broaden the design space of pneumatics-activated adhesive devices by adding the contact geometry of the soft hollow pillars as a new design parameter, which can provide valuable guidance for tunable adhesive design for various applications in manufacturing and robotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call