Abstract

This paper presents three flow patternsdispersed flow, reverse flow, and half-ring flowin the post-bend region of a 45° inclined pneumatic conveying pipe. Solid concentration and velocity distribution were measured using electrical capacitance tomography (ECT), particle image velocimetry (PIV), and a high-speed camera. The axial velocity of particles and solid transverse motion in the pipe cross section were obtained using a modified cross-correlation method from the ECT data for the three flow patterns. The axial velocity profile over the pipe cross section was compared with data obtained from the PIV system. In particular, emphasis has been placed on the characterization of the reverse-flow pattern, where negative values of solid velocities were observed. By analyzing the images captured with the high-speed camera, three distinct regions in the solid phase of the reverse-flow regime may be discerned. A dense region with high solid concentration formed next to the bottom wall of the inclined conveying pipe, while a dilute region with a relatively low solid concentration formed near the center of the pipe. Reverse flow was observed to occur predominantly in the dense region and a transition region between the two. Finally, the dynamic forces acting on single particles were analyzed for the three flow patterns. This analysis showed that the phenomena of reverse-flow and half-ring flow structure formation may be attributed to the effects of electrostatics. This finding has also been validated with results of numerical simulations performed in the present study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call